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I.  Abstract 

The response of plants and animals in the pine forests of southern Florida to 

variation in fire and hydrological regimes remains inadequately described, hindering the 

ability of resource managers to manipulate fire and water to achieve desired ecological 

outcomes.  In this study, we took advantage of natural variation in two measures of fire 

history (the number of days since last fire and the number of times an area had been 

burned during the previous ten years) and one measure of hydrology (water table 

elevation) to explore how plants, breeding birds, and wintering birds in slash-pine (Pinus 

elliottii var. densa) forests responded to variation in fire and water levels.   

At the largest spatial scale, considering samples taken from 441 points located 

across the range of slash pine in south Florida, variation in the structure and composition 

of the plant (72% of the explained variation) and both bird assemblages (73% and 80% of 

the explained variation in the breeding- and wintering-bird assemblages, respectively) is 

driven primarily by variation in water-table elevation, with the remainder explained by fire 

history.  The relative importance of hydrology was also apparent when examining variation 

in plant and bird assemblages at a smaller spatial scale.  Within study sites, local variation 

in water-table elevation drove variation in structure and composition of vegetation at 5 of 

7 sites, of breeding-bird assemblages at 4 of 7 sites, and of wintering birds at 7 of 7 sites.  

However, the responses of individual components of vegetation and individual bird species 

at this smaller scale were not always concordant with patterns observed at the larger 

spatial scale.  Indeed, the effects of variation in water-table elevation that emerged at the 

smaller scale often ran counter to the effects described at the larger scale.  The within-site 

effects of fire, although generally less important than those associated with variation in 

water level, were more consistent with patterns described at the larger scale.  At both 

scales of observation, areas burned more recently and frequently tended to contain short, 

sparse understories and had more standing dead trees, an important component of habitat 

for several bird species.  As expected within a fire-dependent ecosystem, no bird species 

were associated with fire-suppressed conditions, although most species were able to 

tolerate fire-return intervals as long as 5 years without any significant effect on abundance.   
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II.  Background and purpose 

The south Florida slash pine (Pinus elliottii var. densa) ecosystem – herein defined to 

include both the pine rocklands of the Miami Rock Ridge and Tamiami limestone and the 

more widespread transitional pine flatwoods further to the west – once covered most of 

the upland area of south Florida.  Beginning in the early 20th century, however, large areas 

of slash pine were cleared for residential, commercial, and agricultural development, and 

by some estimates the areal extent of this ecosystem is now < 10% of what it once was 

(Noss and Scott 1997).   This ecosystem also supports a large number of endemic and rare 

plants and animals, and thus management of remaining slash pine is of critical importance 

to the conservation of biological diversity in southern Florida (USFWS 1999).    

Variation in the structure and composition of the slash-pine ecosystem of south 

Florida is thought to be controlled primarily by fire and, to a lesser extent, by hydrology 

(Robertson 1953, Alexander 1967, Wade et al. 1980, Gunderson 1994, Platt 1999, Duever 

2005).  Historic fire-return intervals remain the subject of debate, although consensus 

estimates suggest that slash-pine forests probably burned, on average, at least twice a 

decade (Wade et al. 1980, Snyder et al. 1990).  As fire-return intervals increase, the density 

and size of understory shrubs increases, eliminating the open conditions that characterize 

the ecosystem and reducing the diversity of herbaceous plants, many of which are 

intolerant of shade (Snyder et al. 1990, Carlson et al. 1993, Platt 1999, Liu et al. 2005).  In 

extreme cases of fire suppression (fire-return intervals >20 years), slash pine is 

successional to hardwoods (Robertson 1953, Alexander 1967).  Because of the difficulty in 

managing natural fires in this highly fragmented ecosystem, which is embedded within a 

largely urban matrix, prescribed fire is the primary tool used to restore and maintain the 

south Florida slash pine ecosystem and its component plants and animals.    

Despite its importance as a management tool, questions remain surrounding the 

ecological effects of prescribed fire in this ecosystem.  Most notably, there is relatively little 

quantitative information describing the response of plants and animals to variation in fire-

return interval.  This hinders the ability of resource managers to use fire to achieve desired 

ecological outcomes.  In this study, we addressed this information gap by examining the 

influence of fire history (measured as the time since last fire and the number of times an 

area had burned during the past 10 years) on present-day variation in vegetation structure 

and bird abundance at sample points located across the range of south Florida slash pine.  

In addition, because variation in hydrological conditions can influence the behavior and 

ecological effects of fire (Lockwood et al. 2003, Slocum et al. 2003), we also examined the 

relative importance of variation in water-table elevation.  Understanding the influence of 

hydrology on plants and animals in this ecosystem is important as large-scale efforts to 

restore normative hydrological processes (i.e., the Comprehensive Everglades Restoration 

Program) begin to impact this system.  Finally, we took advantage of experimental fires 

conducted at a long-term research site on one portion of the study area to examine in detail 

how variation in the season and frequency of fire affected the demography of standing dead 

pine trees or snags, which are an important component of habitat for many bird species.  

The results of this study will help refine fire-management plans for south Florida slash pine 

forests, identify ecological targets for monitoring and management, and improve our ability 
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to predict how this ecosystem may change as a result of efforts to restore normative 

hydrological processes in the greater Everglades.    

III.  Study description and location 

Objective 1) Determine the large-scale patterns of relationship between fire 

management, hydrology, and abundance and distribution of breeding and 

wintering landbirds and their habitats.   

Bird Survey Stations 

During the period from November 2005 – January 2006, we established a network 

of avian monitoring stations on federal and state lands.  Survey stations were established at 

seven sites dominated by south Florida slash pine.  Sites varied in stand age, elevation, fire 

history, and understory vegetation associations (Fig. 1, Table 1).  In Long Pine Key, 

Everglades National Park (ENP) and Raccoon Point, Big Cypress National Preserve (BCNP) 

bird survey stations were previously established as part of a long-term monitoring effort of 

reintroduced cavity-nesting species (G.L. Slater, Ecostudies Institute, unpublished report).  

One-hundred four and 95 stations were established in Long Pine Key and Raccoon Point, 

respectively, under the criteria that stations were > 350 m apart and were surrounded by 

at least 100 m of contiguous pine forest.  We used these same criteria to identify survey 

stations in each of the five remaining sites.  To obtain station locations prior to field visits, 

we first created maps of each site using ArcGIS (ESRI, Redland, CA) and satellite imagery 

obtained through the South Florida Natural Resource Center's (SFNRC) GIS library and 

from other agency partners.  

Next, we gathered vegetation cover layers for each site to identify all pine-forest 

patches, and merged annual fire-history layers from each site to determine the time since 

each patch was burned.  Using ArcGIS and our site maps with vegetation and fire history, 

we overlaid a 50m grid and selected points to serve as survey stations in a stratified 

random fashion, with strata based on time since an area last burned.  

In the field, using the criteria identified above, we determined whether the station 

could be established at the pre-determined location or whether it needed to be removed 

from the list.  In total, we established 238 points in addition to the 199 established in Long 

Pine Key and Raccoon Point, for a total of 441 (Table 1).  

 Bird Surveys 

 We conducted avian surveys during the non-breeding (15 Dec – 15 Feb) and 

breeding (15 Apr – 1 Jun) seasons.  Each station was visited once per season.  Each survey 

consisted of a seven-minute count, during which observers recorded the radial distance 

from the sampling station to all birds detected.  Surveys were conducted between sunrise 

and 10:00 as long as weather conditions remained suitable (i.e., light winds and light or no 

precipitation).   
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Figure 1.  Map of south Florida, USA, showing the 441 points in south Florida slash pine (Pinus 

elliottii var. densa) at which bird abundance and vegetation structure were sampled during 

2005-2008. 
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Table 1.  Location and description of study areas. 

Administrative Unit: Everglades National Park  

Long Pine Key, ENP.  104 survey points.  This 8,100 ha upland site lies at the southwest tip of the Miami 

Rock Ridge and contains ~4,600 ha of pine forest.  Within the relatively continuous pine forest, 

embedded habitats include Muhlenbergia prairie, hardwood hammocks, and cypress forest.  The pine 

forest is mostly even-aged, a result of extensive logging in the 1940's.  After a decade of fire suppression, 

the fire management program in the mid-1990s began implementing prescribed burns at the peak of the 

natural fire ignition season (May- July) to reduce fuel loads and restore natural vegetation communities.  

Recent fire management applies prescribed fire on a 3-year average fire interval during the natural fire 

ignition season.  Access to this site is through fire roads within the area. 

Administrative Unit: Big Cypress National Preserve 

Raccoon Point, BCNP.  95 survey points.  Raccoon Point contains approximately 9,000 ha of virgin, old-

growth pine forest within a cypress mosaic.  Raccoon Point has a shallow sandy substrate underlain by 

limestone bedrock, making it transitional between the pine rocklands further south and the pine 

flatwoods to the north.  For the last decade, this area has been the site of an experimental fire study 

directed by Dr. Jim Snyder.  As is typical for hydric pinelands, the herbaceous and grass components are 

well developed, while the shrub layer contains a small to moderate amount of hardwoods and saw 

palmetto.  Access to this site is by a gravel road created for oil-extraction activities. 

West Raccoon Point, BCNP.  40 survey points.  West Raccoon Point lies 5 km west of Raccoon Point 

separated by large cypress strands.  Forest structure and understory composition is similar to Raccoon 

Point, but the area is slightly lower in elevation than Raccoon Point and has not received prescribed fire 

as frequently as Raccoon Point.  Access to this site is by off-road buggy trails. 

Addition Land, BCNP.  42 points.  The Addition Land site is approximately 30 km north of Raccoon Point 

and contains ~30,000 ha of pine forest.  This pine forest/dry prairie mosaic floods infrequently because 

of its higher elevation.  The Addition Land was acquired by BCNP in 1996.  Its management history 

included logging, grazing, and frequent burning during the non-growing season, which has resulted in a 

mature, even-aged forest, a low density of trees and snags, and an overdeveloped shrub layer of 

palmetto and hardwoods.  The area has been subject to several recent wildfires. 

Stairsteps, BCNP.  42 points.  Stairsteps lies at the northwestern extent of the pine rocklands and 

contains ~25,000 ha of pine forest.  This site was logged in the mid 1900's, resulting in largely second 

growth stands of pines.  Pines are interspersed with wet prairies and small hardwood hammocks.  This 

site has the lowest elevation of all the sites and has a mostly herbaceous understory.  Prescribed fire was 

applied to this area in 2001.  

Administrative Unit: Florida Panther National Wildlife Refuge 

Florida Panther National Wildlife Refuge.  66 points (only 60 sampled for wintering birds).  This site 

occurs within the Big Cypress Basin, west of Big Cypress National Preserve, and contains ~2,300 ha of 

pine forest.  The refuge is separated into 52 management compartments, originally outlined by old roads 

and vegetation features.  Compartments are burned on a 4-year rotation primarily during the non-

growing season (January-February).  Cabbage palm dominates the shrub layer, and its abundance may 

be a consequence of reduced hydrological flow through the refuge.  Mechanical thinning was applied to 

500 ha in 2005. 

Administrative Unit: Miami-Dade County Parks and Recreation Department 

Miami-Dade County Parks and Recreation.  52 points.  This county agency is responsible for the 

management of more than 50 environmentally sensitive and natural areas in Miami-Dade County.  These 

sites are relatively small, highly fragmented, and lie in a mostly urban matrix.  Less than 2% of Miami-

Dade County's original pine rocklands remain. Fire management is difficult due to restrictions related to 

smoke, citizen acceptance, and availability of personnel to conduct fuel treatments.  Wildfire is the 

primary fuel management technique within these lands, and most sites have high fuel loads as a result of 

long-term fire suppression.   

Vegetation sampling 

 We sampled vegetation at each survey station annually between 1 December and 1 

March, unless vegetation changed due to fire between the non-breeding- and breeding-

season bird surveys.  In those instances, we resampled vegetation at the survey point.  
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Vegetation sampling was based on a “spoke and wheel” structure.  We determined the 

number and diameter of living and dead trees (by species) around the survey point in a 

11.3-m-radius circular plot and at three additional sampling plots centered 40 m from the 

survey station at bearings of 0, 120, and 240. At the survey point and at each of the three 

sampling plots centered 40 m from the survey point we determined percent ground cover 

(<1.5 m) and shrub cover (between 1.5 and 8 m) for understory habitat components (e.g., 

herbs and graminoids, hardwood species, and palms) within a 5-m-radius circular plot.  

Finally, we visually estimated the tallest and average heights of pines, hardwoods, and 

palms within the shrub layer (<8 meters) along each of the spoke transects.  

Estimating fire history 

 Using annual fire history layers from each organizational unit, we determined the 

time since each survey point was burned and the total number of times it had been burned 

in the last 10 years.  Time since last fire ranged from 3 days to > 10 years, and the number 

of burns in the past 10 years ranged from 0 to 9.   

Estimating water-table elevation 

We downloaded daily stage data for all stations within 25 km of a survey point (data 

are from the South Florida Water Management District, available online at 

http://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu). We then averaged the 

daily data to estimate the average water stage for each sampling period (defined by the 

non-breeding [15 Dec – 15 Feb] and breeding [15 Apr – 1 Jun] seasons).  Average stage 

elevations were then kriged using Universal Kriging (spherical model with anisotropy), and 

the value for each bird-survey station was extracted.  We calculated the elevation above sea 

level (ASL) using the ATLSS elevation model (NGVD M) and the Southwest Florida 

Feasibility Study elevation model (NAVD FT).  If a bird-survey station had data from both 

models (i.e., models overlapped at that point), then we used the average of the 2 models.  

We then subtracted the elevation ASL at each survey point from the estimated stage height 

to calculate water-table elevation.   

 Based on a random-effects analysis, most (50%) of the variation in our estimates of 

water-table elevation was due to differences between sampling periods – that is, 

differences between the wet and dry seasons.  Within a season, however, variation was 

attributable to differences among sites (22%) and among points within sites (27%).  Less 

than 1% of the variation was due to annual variation in water-table elevation.  Thus, our 

measure of water-table elevation served as a measure of average differences among survey 

points and study sites, essentially allowing us insight into how plants and birds respond 

along a gradient from relatively dry to relatively wet locations. 

Statistical analyses 
We began by screening out vegetation variables that we suspected were of little 

biological significance using two criteria: variables included in the analysis had to have a 

median value >0 and had to have a non-zero value on >70% of the points.  After screening, 

we retained 22 vegetation variables for inclusion in subsequent analyses (Table 2).   We 

used multivariate multiple regression to examine whether vegetation structure at each 

survey point exhibited a statistically significant relationship with the independent (i.e.,  
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Table 2.  Twenty-two measures of vegetation structure used in multivariate analyses. 

Percent bare ground 
Percent ground cover: herbaceous1  
Percent ground cover: hardwoods 
Percent ground cover: palms 
Percent ground cover: total 
Percent shrub cover: hardwoods2 

Percent shrub cover: palms3 

Percent shrub cover: total 
Average height of understory palms 
Average height of understory pines 
Maximum height of understory palms 
Maximum height of understory hardwoods 
Maximum total height of the understory 
Number of small pine trees (<10.5 cm diameter at breast height [DBH]) 
Number medium pine trees (10.5 – 18.5 cm DBH) 
Number of large pine trees (>18.5 cm DBH) 
Total basal area of pine trees 
Number of small snags 
Number of medium snags 
Number of large pine snags 
Total number of pine snags 

Total basal area of pine snags 
1 Ground cover was defined as the amount of ground surface overlain by vegetation <1.5 m tall 
2 Shrub cover was defined as the amount of ground surface overlain by vegetation between 1.5 m and 8 m tall 
3  Palms lumped to include saw palmetto (Serona repens) and cabbage palm (Sabal palmetto). 

 

 

predictor) variables describing fire history and hydrological conditions, while controlling 

for the random effect of site.  However, we expected that these data were unlikely to meet 

the assumptions of a traditional multiple regression, in particular that the errors were 

normally distributed (because, e.g., of the abundance of zeros in the data set).  Thus we 

used permutation tests (Anderson 2001, McArdle and Anderson 2001) to calculate the 

probability of obtaining a squared partial correlation coefficient greater than that 

observed, given a distribution of possible squared partial correlation coefficients created 

by permutation.  No exact permutation test for a partial regression is possible (Anderson 

and Robinson 2001), and so we used an approximate test (Freedman and Lane 1983) in 

which residuals, rather than observations, are exchanged during permutation.  

Complicating the interpretation of these tests was the autocorrelation introduced by 

sampling vegetation at the same survey point in multiple years.  Treating measurements  

from the same point in multiple years would artificially inflate the sample size and 

potentially increase the risk of committing a Type I error.   To address this problem, we 

restricted permutations such that the residuals associated with a location sampled in 

multiple years were permuted as a unit, rather than individually (Anderson and ter Braak 

2002).  As a consequence, the tests were based on 441 permutable units (the number of 

points in the study), as opposed to the total number of observations taken during the 
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course of the study (1,516).  The multivariate multiple regression was implemented in 

DISTLM (Anderson 2004).  Data were transformed to x = ln(x+1) prior to analysis to 

account for the different scales (i.e., integer or percentage) on which dependent (i.e., 

response) variables were measured.  We used Euclidean distances in the analysis, and did 

not standardize any of the dependent variables prior to analysis (in preliminary analyses 

we explored standardization and different distance measures, but found no appreciable 

affect on the outcome of any analysis).       

We then used partial canonical analysis of principal coordinates (CAP; Anderson 

and Willis 2003, Legendre 2008), controlling for the effect of site, to visualize the 

multivariate patterns suggested by the results of the multivariate multiple regression 

analysis.  We conducted this analysis using the capscale function in R (R Development Core 

Team 2008).  As with the multivariate multiple regression, we transformed data to x = 

ln(x+1), did not standardize values of dependent variables, and used Euclidean distances.  

To evaluate the contribution of each measured vegetation variable to the multivariate 

pattern identified in the CAP, we calculated product-moment correlation coefficients 

between the CAP score for each point on each axis and the ln-transformed value of each 

vegetation variable at that point.  We only considered correlation coefficients ≥ 0.20; values 

less than this were assumed to reflect biologically insignificant relationships.  We also 

conducted these ordinations on a site-by-site basis to examine the extent to which patterns 

observed at the largest spatial scale – the entire study area – were concordant with 

patterns of variation observed within individual study sites.   

We estimated density and abundance of birds using distance sampling as 

implemented by Program Distance (Thomas et al. 2006).  Distance sampling is one of 

several methods that can be used to adjust counts of birds to address imperfect 

detectability. For these analyses we excluded all individuals detected visually because the 

detection functions for these encounters were almost certainly different from detection 

functions generated from encounters with birds that were singing or calling.  We could not 

conduct separate analyses for males and females as most of the detections were not 

identifiable to sex, either because both sexes share a vocal array (e.g., Northern Cardinal 

(Cardinalis cardinalis) or because the individual was detected via a vocalization used by 

both sexes.   

Following Buckland et al. (2001), we modeled detection functions using one of three 

key functions (uniform, half normal, and hazard rate).  In addition, we examined whether 

changing the shape of each key function via a series expansion term (cosine, simple 

polynomial, or hermite polynomial) improved the ability of the model to describe the 

detection function.  We evaluated the strength of support for each model using Akaike’s 

Information Criteria, as adjusted for small sample size (AICc) and normalized Akaike 

weights (wi).  We always used the best model for inference, even when AICc and wi 

indicated model-selection uncertainty, as we found that the estimates of density produced 

by distance sampling were robust to variation in the specified detection function, and 

model-averaged values were always identical, or nearly so, to those obtained from the best 

model.  We used the estimated probability of detection from the best model to adjust the 

counts at each survey point, using only detections from within a 50-m radius of the point.  

We limited detections to this area so that our estimates of bird density covered 

approximately the same area as our measures of vegetation structure.  We examined 

relationships between density of birds at each point and fire history and hydrology using 
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multivariate multiple regression and CAP, as described for the analysis of variation in 

vegetation structure.  Bird densities were not transformed prior to analysis.   

Objective 2) Investigate the role of fire in snag dynamics. 

Study area and field methods 

We conducted this experiment in Raccoon Point, BCNP, which contains the most extensive 

unlogged stands of south Florida slash pine in the region (see Table 1).   In 1993, we 

established 12 1-ha plots in the pinelands of Raccoon Point and in each plot we tagged and 

mapped all trees with diameter at breast height (dbh) > 5.0 cm and assigned each to one of 

four states: live, low-to-moderately decayed snag (decay state 1; ranged from newly 

created snags with tight bark and intact branches to moderately decayed snags with some 

or no bark remaining, branches mostly absent, and sapwood intact to sloughing), heavily 

decayed snag (decay state 2; only heartwood remaining), and down (any tree or snag 

completely consumed by fire, completely uprooted or broken at a height of < 1.5 m, or 

decayed to a height of < 1.5 m or DBH < 5.0 cm).  We chose to categorize the continuous 

process of decay in this fashion because these categories generally reflect the suitability of 

a snag for Brown-headed Nuthatches and Eastern Bluebirds (G.L. Slater and J. D. Lloyd, 

unpublished data), both of which are species of management concern.  Brown-headed 

Nuthatches are weak excavators, capable of creating cavities in soft wood, but Eastern 

Bluebirds are secondary cavity nesters and rely exclusively on cavities excavated by other 

species.  Both species rarely use cavities in live trees or in snags in decay state 2, 

presumably due to the hardness of the heartwood of south Florida slash pine.  Indeed, 91% 

(n = 409) of nests of both species that we monitored from 1998-2005 were found in snags 

in decay state 1 (Ecostudies Institute, unpubl. data).  Given that many of the cavities used 

by these two species were likely excavated by other species (e.g., Red-bellied Woodpeckers 

(Melanerpes carolinus) or Downy Woodpeckers (Picoides pubescens), we assume that other 

cavity-nesting birds show similar preferences.   

The initial state of each tree or snag was recorded between July 1993 and October 

1994.  The final state of each tree was recorded 15 years later in January 2008.  All plots 

were subject to baseline prescribed fires conducted during January-February 1990 and 

March-April 1994.  Thereafter, between 1996 and 2006, each plot was treated with 

experimental burns on a short interval (target interval was 3 years between successive 

fires) or a long interval (target interval was 6 years between successive fires), with fires 

conducted during the dry (November – April) or wet season (May – October).  Plots were 

randomly assigned to one of the four treatment combinations (dry season, long interval; 

dry season, short interval; wet season, short interval; and wet season, long interval).  Each 

treatment combination was applied to three study plots.  We used bark char height (height 

of the blackened trunk) as an index of fire intensity (e.g., Waldrop and Van Lear 1984).  

Bark char height was measured one month after the first experimental fire in all plots, and 

one month after the second experimental fire in four of the plots that received the short-

interval treatment.   
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Statistical analyses 

We examined treatment effects on transition probabilities – as measured by the 

state of each marked tree or snag at the first (1993/1994) and final (2008) sampling 

periods -  by fitting baseline category, multinomial logit models using the multinom 

function in R (Venables and Ripley 2002). We evaluated a set of five candidate models in 

this analysis (Table 3). 

 
Table 3.  Candidate set of multinomial logit models used to examine the effects of season of burn (dry 

or wet season) and fire-return interval (short or long) on the dynamics of snags in a south Florida 

slash pine forest in Big Cypress National Preserve, Florida.   

Model name Model structurea 

Null model Initial state + observation days + DBH 

Season 
Initial state + observation days + DBH + season 

Interval 
Initial state + observation days + DBH + interval 

Season + interval 
Initial state + observation days + DBH + season + interval 

Season*interval Initial state + observation days + DBH + season +  interval + season*interval 

 

 The response variable for the analysis was the state of the tree or snag at the final 

observation.  Every model in the candidate set included a term for the initial state of the 

tree or snag because the initial state determined which states were possible at the final 

observation (e.g., a snag in decay state 2 at the initial observation could end the experiment 

in only one of two possible states (decay state 2 or down), whereas a tree that was alive at 

the initial observation had four possible endpoints: still alive, decay state 1, decay state 2, 

or down).  Every model also included a term for the number of days that a tree was under 

observation, which accounted for any differences in transition probability arising from 

variation in the date of the initial observation, and a term for DBH, which can have an 

important effect on the persistence of snags (Morrison and Raphael 1993).  We examined 

the effects of our treatments by including dummy variables for season of burn and fire-

return interval in some of the models. We evaluated the degree of support for each model 

using Akaike’s Information Criteria (AIC) and Akaike weights (w), which reflect the relative 

likelihood that a given model is the best model in the set of candidate models.  Akaike 

weights were calculated as 
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where Δi is the difference in the AIC value between model i and the model with the 

minimum AIC.   
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We used the coefficients from the best-fitting model to evaluate the strength and 

direction of treatment effects on transition probabilities.  We also calculated the percentage 

change in the odds of a transition occurring as a function of a change in the value of our 

predictor variables by subtracting 1 from the odds ratio (calculated as the exponent of the 

coefficient of the predictor variable) and multiplying the value by 100.  We did not 

interpret odds ratios for predictor variables where 95% confidence limits overlapped one.  

However, interpretation of the coefficients in a multinomial logit model is non-intuitive, as 

they represent the relative log-odds of membership in a particular decay state as opposed 

to the baseline category, which in this case was a live tree.  As such, much of our 

interpretation is based on the fitted values for transition probabilities as generated from 

the best-supported model (Fox and Anderson 2006), which we believe provide a more 

readily interpretable presentation of the results.  When comparing transition probabilities 

among different treatment groups, we considered non-overlapping 95% confidence 

intervals as evidence of statistically significant differences.  We also calculated average 

lifespan of snags as 

1

ln( )S

−=l , 

where ( )S was the annualized probability that a snag in either decay state remained in that 

decay state, as calculated from the estimated probability from the best model that a snag 

that began the study in either decay state remained in that same state  until the end of the 

study. 

To further ease in the interpretation of our results, we also used the fitted transition 

probabilities from the best-supported model to project changes in the population of snags 

at Raccoon Point under each of the treatment combinations.  The purpose of these 

simulations was not to predict future changes in the population of snags, but rather to 

translate the matrix of predicted transition probabilities into a more intuitive quantity 

(density of trees and snags).  We used 50 15-year time steps, which appeared sufficient to 

illustrate the consequences of variation in transition probabilities among treatments (i.e., 

an approximate asymptote was reached by 50 time steps).   Starting vectors were equal to 

the average density of individuals in each state at the final observation.  Changes in the 

density of snags and trees between time steps were based on transition probabilities 

randomly drawn from a beta distribution centered on the estimated mean for each 

transition and with the estimated variance for each transition (means and variances were 

estimated from the best-supported model in the candidate set).  We chose to use the beta 

distribution as it is considered the most reasonable choice for simulating matrix elements, 

such as the transition probabilities reported here, that are limited to values between 0 and 

1 (Morris and Doak 2002).  For example, the number of stage 1 snags at time t+1 was 

projected as  

 

( ) ( )1 0 0,1 1 1,1( 1) ( ) ( )t t t
N N P N P

+
= +  

 

where 
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0( )t
N  = number of live trees at time t,  

0,1P  = probability that a live tree enters decay state 1 between time t and t+1, 

1( )t
N  = number of snags in decay state 1 at time t, and 

1,1P  = probability that a tree in decay state 1 remains in decay state 1 from time t to t+1. 

  

The fifty-step projection for each treatment combination was repeated 1,000 times.  

We estimated the mean projected number of snags in each decay state at each time step 

from the 1,000 simulated projections, and used the 2.5 and 97.5 percentiles from the 

simulations to define the 95% confidence limits around each mean.    

IV. Key findings 

Objective 1) Determine the large-scale patterns of relationship between fire 

management, hydrology, and abundance and distribution of breeding and 

wintering landbirds and their habitats.   

Key finding 1) Variation in hydrology was the primary driver of large-scale variation in 

vegetation structure and the distribution and abundance of breeding and wintering birds 

across the range of south Florida slash pine.  Fire history was of secondary importance. 

Water-table elevation, the number of days since last fire, and the number of times a 

sample plot had burned explained a significant (P < 0.001) amount of variation in both 

vegetation structure and abundance of breeding birds.  Only water-table elevation 

explained a significant amount of variation in the density of birds during the winter; 

neither of the axes related to the two fire variables explained a significant amount of 

variation (P > 0.3).  Despite the statistically significant relationship between our predictor 

and response variables, the vast majority of variation in the structure of vegetation and the 

distribution and abundance of birds was not accounted for by either hydrology or fire 

history (for plants, 6.8% of the total variation was explained by the predictor variables; for 

breeding birds, 4.8%; and for wintering birds, only 0.5%).  Of the variation explained by the 

predictor variables, water-table elevation accounted for the majority: 72% of the explained 

variation in vegetation structure, 73% of the explained variation in breeding-bird densities, 

and 77% of the explained variation in densities of wintering birds.   

Across all sample points, hardwood ground and shrub cover, the maximum height of 

understory hardwoods, the number of small and medium pines and pine snags, the total 

number of snags, and the height of understory pines all declined as water-table elevation 

increased (Fig. 2).  The average height of understory palms, the maximum height of 

understory palms, palm shrub cover, the number of large pine trees, and total basal area of 

pine trees all increased as sites grew wetter (Fig. 2).  Points burned more recently and 

frequently were characterized by less grass cover, less ground and shrub cover by 

hardwoods, shorter understory hardwoods, less total shrub cover, shorter understory 

pines, fewer small and medium pines, and more pine snags of all size classes (Fig. 2). 
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Breeding birds associated with wetter sites included Blue-gray Gnatcatcher 

(Polioptila caerulea; BGGN), Brown-headed Nuthatch (Sitta pusilla; BHNU), Carolina Wren 

(Thryothorus ludovicianus; CARW), Common Yellowthroat (Geothlypis trichas; COYE), 

Downy Woodpecker (DOWO), Eastern Bluebird (EABL; Sialia sialis; EABL), Great-crested 

Flycatcher (Myiarchus crinitus; GCFL), Pine Warbler (Dendroica pinus; PIWA), Red-bellied 

Woodpecker (RBWO); Tufted Titmouse (Baeolophus bicolor; TUTI), and White-eyed Vireo 

(Vireo griseus; WEVI) (Fig. 3).  Only two species were more common on dry sites: Blue Jay 

(Cyanocitta cristata; BLJA) and Northern Mockingbird (Mimus polyglottos; NOMO) (Fig. 3).  

Downy Woodpecker, Great-crested Flycatcher, Northern Cardinal, Pine Warbler and Red-

bellied Woodpecker were also associated with more recently or frequently burned points; 

no species was associated with fire-suppressed conditions (Fig. 3).   

Wintering birds showed weaker associations in general with all of the independent 

variables.  Three species – American Robin (Turdus migratorius; AMRO), Pine Warbler, and 

Yellow-rumped Warbler (Dendroica coronata; YRWA) – were associated with wetter sites; 

none were associated with lower water-table elevations (Fig. 4).  Densities of wintering 

birds were not associated with any particular fire history (Fig. 4). 

The relatively poor performance of the models summarized in Figures 2, 3, and 4 

suggests the importance of biotic interactions, other past and ongoing sources of 

disturbance, and biogeographical considerations in understanding the present appearance 

of the pine ecosystems of southern Florida, at least when viewed at large spatial scales.    
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Figure 2.  Results of a partial canonical analysis of principal coordinates (CAP) conducted on 

vegetation variables measured in slash-pine (Pinus elliottii var. densa) forests across southern 

Florida, 2005-2008.  CAP axis 1 is positively correlated with water-table elevation (r = 0.50), and CAP 

axis 2 is negatively correlated with the time since last fire (r =-0.34) and positively correlated with the 

number of times a point burned (r = 0.20).  The position of each vegetation variable indicates the 

strength and sign of its association with the independent variables. 
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Figure 3.  Results of a partial canonical analysis of principal coordinates (CAP) conducted on 

breeding-bird densities estimated in slash-pine (Pinus elliottii var. densa) forests across southern 

Florida, 2005-2008.  CAP axis 1 is positively correlated with water-table elevation (r = 0.40), and CAP 

axis 2 is negatively correlated the time since last fire (r =-0.15) and positively correlated with the 

number of times a point burned (r = 0.22).  The position of each bird species code indicates the 

strength and sign of its association with the independent variables. 
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Figure 4.  Results of a partial canonical analysis of principal coordinates (CAP) conducted on 

nonbreeding-bird densities estimated in slash-pine (Pinus elliottii var. densa) forests across southern 

Florida, 2005-2008.  CAP axis 1 is positively correlated with water-table elevation (r = 0.11).  CAP axis 

2 was non-significantly related to time since last fire (r =-0.05) and the number of times a point 

burned (r = 0.09).  The position of each bird species code indicates the strength and sign of its 

association with the independent variables.  Species clustered near the origin show no relation to any 

of the independent variables.   

Key finding 2) Variation in hydrology was the primary driver of within-site variation in 

vegetation structure and the distribution and abundance of breeding and wintering birds.  

Fire history was of secondary importance. 

 Variation in water-table elevation was more strongly associated with among-point, 

within-site variation in vegetation structure at 5 of 7 study sites than either of the fire 

variables.  The number of days since last fire was the strongest predictor of vegetation 

structure at the other two study sites (Addition Land and Miami-Dade County parks).  

Variation in breeding-bird density was most strongly related to variation in water-table 

elevation at 4 of 7 sites, with breeding-bird density responding to the number of days since 

fire at a single site (Addition Land) and to the number of fires at two sites (Miami-Dade 
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County parks and Raccoon Point).  Water-table elevation was always the strongest 

predictor of bird densities during the non-breeding season.   

Key finding 3) The effects of hydrology on plants were strongly scale dependent, and effects 

described at large spatial scales were not always concordant with effects described at smaller 

scales.  The effects of hydrology on birds tended to be more consistent among scales.     

Some of the large-scale associations between water-table elevation and birds and 

plants reflect differences among study sites, and these relationships were often not 

apparent when examined within study sites.  For example, at the largest scale, hardwood 

ground and shrub cover was negatively associated with water-table elevation; that is, 

hardwood shrubs were denser and more abundant at wetter sites.  This is concordant with 

existing understanding of the role of hydrology in shaping the structure and composition of 

south Florida slash pine forests: sites with shallower water tables have fewer hardwood 

shrubs and grassier understories than drier sites, presumably because an elevated water 

table reduces the ability of hardwoods to establish and grow (e.g., Duever 2005).   

However, within each of the seven sites we studied, the opposite was true: hardwood 

ground and shrub cover was greater at points with higher water tables.   This may reflect 

the inability of prescribed fires to carry across wetter portions of a site, resulting in longer 

fire-return intervals for these points and decreased mortality of hardwoods. 

The relationship between water-table elevation and breeding bird densities tended 

to be more consistent across spatial scales.  For example, Pine Warbler, Red-bellied 

Woodpecker, and Common Yellowthroat were all positively associated with water-table 

elevation at the largest spatial scale and were also positively associated with water-table 

elevation within each of the study sites.   

Relationships between bird densities during the winter and water-table elevation 

differed between scales, which is not unexpected given the weak association between non-

breeding birds and any of the measured environmental variables.  For example, Yellow-

rumped Warbler, which was strongly and positively associated with water-table elevation 

at the largest scale, was more abundant at dry points at 4 out of 6 study sites (and showed 

no relationship with water-table elevation at the remaining site). 

Key finding 4) In contrast to hydrology, the effects of fire history on plants were consistent 

between scales, but the effects of fire history on bird densities were variable between scales. 

 Recent and frequent fires produced a similar vegetation structure regardless of the 

scale of observation: more bare ground, less shrub cover, shorter understories, and fewer 

overstory pine trees.  The effects of fire on breeding birds were less consistent.  Pine 

Warblers were strongly and positively associated with fire across all study sites, but within 

4 of the study sites their abundance increased as the number of burns decreased and the 

time since last fire increased.  At two sites they showed the expected positive relationship 

with fire, and at the remaining site abundance of Pine Warblers was not associated with 

variation in fire history.   
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Key finding 5) Breeding birds tolerated fire-return intervals of as long 5 years without 

significant changes in density.  For some species, density declined when fire-return intervals 

exceeded 5 years.. 

 For the five species (Northern Cardinal, Pine Warbler, Red-bellied Woodpecker, 

Downy Woodpecker, Great-crested Flycatcher) that showed a positive association with fire 

across all study sites, all showed a similar pattern of abundance in relation to the time since 

last fire, wherein abundance remained constant for up to 5 years after fire, then declined 

sharply from 5-7 years post-fire, and finally leveled out at > 7 years post-fire (e.g., Figs. 5 

and 6).   Three of these species are cavity nesters – Downy Woodpecker, Red-bellied 

Woodpecker, and Great-crested Flycatcher – and their increased abundance at shorter fire-

return intervals may be due to the increase in number of snags associated with recent fires. 

 

 

 

 

 
Figure 5.  Abundance of Pine Warblers (Dendroica pinus) breeding in slash-pine (Pinus 

elliottii var. densa) forests of south Florida during 2005-2008 as a function of time 

since last fire. 
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Figure 6.  Abundance of Great-crested Flycatchers (Myiarchus crinitus)  breeding in 

slash-pine (Pinus elliottii var. densa) forests of south Florida during 2005-2008 as a 

function of time since last fire. 
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Objective 2) Investigate the role of fire in snag dynamics. 

Key finding 1) Dry-season burns were more intense than wet-season burns and resulted in a 

higher probability of snag creation than wet-season burns.   

 Fire intensity, as measured by the average height of bark char one-month postfire, 
was much greater for dry-season burns (4.4 m, 95% CI = 2.9 – 6.0) than for wet-season 

burns (2.7, 95% CI = 1.7 – 3.7).  Increased fire intensity during dry-season burns may have 

led to increased mortality of pine trees, resulting in an increase in the probability of snag 

creation.  The estimated probability that a live tree became a snag over the course of the 

study was significantly greater for plots burned during the dry season (Fig. 7). 
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Figure 7.  Predicted probability (± 95% confidence interval) that a live south Florida slash pine (Pinus 

elliottii var. densa) tree in Big Cypress National Preserve, Florida became a snag between 1993 and 

2008 as a function of experimental treatment.  Treatments included burning during the dry season 

and with a short (c.a. 3 years) fire-return interval (dry, short), during the dry season and with a long 

(c.a. 6 years) fire-return interval (dry, long), during the wet season and with a short fire-return 

interval (wet, short), and during the wet season and with a long fire-return interval (wet, long).  

Predictions were generated from the best-supported multinomial logit model. 

Key finding 2) Burns conducted at longer intervals increased the probability of snag creation. 

We found that live trees on plots burned on a longer interval had a significantly greater 

probability of becoming a snag (Fig. 7).  Return interval had a smaller effect on snag 

creation than did season of burn (Key Finding #1). 
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Key finding 3) The probability of mortality of existing snags (snag loss) was greater with wet-

season burns.  

 The mortality rate for snags – that is, the probability that a snag was consumed, fell 

over, or decayed completely – was significantly lower on plots that were burned during the 

dry season (Fig. 8). Given the general correlation between fire intensity and the rate of 

spread, wet-season burns likely moved more slowly, with lower flame heights, and thus 

may have concentrated heat transfer around the base of trees and snags, which may 

explain why wet-season burns killed fewer live pine trees.  At the same time, by focusing 

heat transfer at the base of existing snags, wet-season burns may have been more likely to 

consume sapwood at the base of low-to-moderately decayed snags, weakening structural 

support and increasing the probability that these snags fell during the course of the study.   
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Figure 8.  Predicted probability (± 95% confidence interval) that a south Florida slash pine (Pinus 

elliottii var. densa) snag in Big Cypress National Preserve, Florida fell down or decayed or was 

consumed by fire to a height of < 1.5 m or a dbh of < 5.0 cm between 1993 and 2008 as a function of 

experimental treatment.  Treatments included burning during the dry season and with a short (c.a. 3 

years) fire-return interval (dry, short), during the dry season and with a long (c.a. 6 years) fire-return 

interval (dry, long), during the wet season and with a short fire-return interval (wet, short), and 

during the wet season and with a long fire-return interval (wet, long).  Predictions were generated 

from the best-supported multinomial logit model. 
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Key finding 4) Burning in the dry season and with longer return intervals is predicted to yield 

greater densities of snags. 

 Live pines were more likely to become lightly to moderately decayed snags, and 

snags in this state were more likely to remain in this state, on plots burned during the dry 

season and on a longer interval, which resulted in a substantially greater projected density 

of  lightly to moderately decayed snags than in other treatments (Fig. 9).  In general, these 

lightly to moderately decayed snags are more valuable to cavity-nesting birds than other 

decay classes.  Dry-season burns were also projected to result in a greater density of 

heavily decayed snags than wet-season burns, apparently because of an increase in 

transition probabilities to this state from live trees and low-to-moderately decayed snags 

(Fig. 10). 
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Figure 9.  Projected density of low-to-moderately decayed south Florida slash pine (Pinus elliottii var. 

densa) snags in Big Cypress National Preserve, Florida as a function of experimental treatment.  

Treatments included burning during the dry season and with a short (c.a. 3 years) fire-return interval 

(dry, short), during the dry season and with a long (c.a. 6 years) fire-return interval (dry, long), during 

the wet season and with a short fire-return interval (wet, short), and during the wet season and with a 

long fire-return interval (wet, long).  Projections were based on beta-distributed random numbers 

with a mean and variance equal to those predicted from the best-supported multinomial logit model, 

fit to data on the fate of marked trees and snags between 1993 and 2008.  Densities at each 15-year 

timestep were calculated as the average from 10,000 simulations; 95% confidence intervals were 

estimated but were too narrow to be represented on the y-axis. 
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Figure 10.  Projected density of heavily decayed south Florida slash pine (Pinus elliottii densa) snags 

in Big Cypress National Preserve, Florida as a function of experimental treatment.  Treatments 

included burning during the dry season and with a short (c.a. 3 years) fire-return interval (dry, short), 

during the dry season and with a long (c.a. 6 years) fire-return interval (dry, long), during the wet 

season and with a short fire-return interval (wet, short), and during the wet season and with a long 

fire-return interval (wet, long).  Projections were based on beta-distributed random numbers with a 

mean and variance equal to those predicted from the best-supported multinomial logit model, fit to 

data on the fate of marked trees and snags between 1993 and 2008.  Densities at each 15-year 

timestep were calculated as the average from 10,000 simulations; 95% confidence intervals were 

estimated but were too narrow to be represented on the y-axis. 
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V. Management implications 

Management implication 1) Hydrological restoration in the greater Everglades 

that results in widespread changes to water-table elevation will effect change in 

the structure and composition of plant and animal communities even in the 

pine-dominated uplands. 

 Annual cycles of flooding and drought play a key role in structuring biological 

communities in the greater Everglades.  As such, “getting the water right” is viewed as the 

critical element in the restoration of the greater Everglades.  Wetland communities are 

expected to respond strongly to the restoration of a more natural hydropattern, but 

relatively little is known of how hydrological restoration will affect upland communities.  

Our results suggest that changes in water-table elevation have the potential to produce 

large and direct changes in the physiognomy of slash-pine forests and in the structure and 

composition of the bird assemblages inhabiting these forests.  Changes in the structure of 

the plant community brought about by changes in water-table elevation will likely produce 

changes in the composition and accumulation rate of fuels, which may produce changes in 

fire behavior.  Changes in fire behavior may in turn produce further changes in the 

structure of the plant community.  Our understanding of how fire shapes the slash-pine 

forests – including the results presented here - has developed during a period when water-

table elevations have been unnaturally low, and as a consequence fire-management plans 

may require substantial revision as hydrological restoration proceeds.    

Management implication 2) Fire-return intervals of up to 5 years are 

appropriate for maintaining populations of most breeding birds 

 All of the breeding birds that exhibited a strong relationship with fire history had a 

similar pattern of abundance, wherein abundance dropped sharply when fire-return 

intervals extended beyond 5 years.  This suggests a general adaptation among breeding 

birds in this ecosystem to fires that occur, on average, approximately 2 times per decade.  

No species was positively associated with fire-suppressed conditions; however, data from 

our experimental study of fire effects on snag populations (Objective 2) suggest that snag 

densities may decline under short (i.e., 3 years) fire-return intervals and thus species that 

require snags for nesting may benefit from occasional fire-free periods that last 6-7 years.  

Incorporating variable fire-return intervals into fire-management planning may be a useful 

approach for creating conditions suitable to a variety of bird species.   

Management implication 3) Density of snags – a key element of habitat for several bird 

species of concern – can be increased by applying fire at longer intervals and by 

burning at the transition between dry-season and wet-season. 

 Prescribed burns could be an effective tool for increasing the density of snags, 

provided that the fire is sufficiently intense to induce mortality among live trees and 

moving rapidly enough to limit the consumption of sapwood on existing snags.  Prescribed 

burns conducted early in the wet season might be useful for increasing snag densities as 

long as fuel and weather conditions are suitable to support a relatively intense fire.  As the 

wet season progresses, and fuel moistures increase, prescribed burns will likely have an 
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increasingly detrimental effect on snag density because fewer snags will be created and 

more will be consumed.  Longer fire-return intervals might also help optimize the balance 

between snag creation and snag consumption during a fire, and lengthening this interval on 

occasion to > 5 years may be beneficial.  Doing so would increase the density of low-to-

moderately decayed snags, which, in slash-pine forests, afford suitable nest sites for a 

variety of cavity-nesting birds, including species of management concern such as Eastern 

Bluebirds, Brown-headed Nuthatches, and Hairy Woodpeckers. 

VI. Relationship to other recent findings and ongoing work on this topic 

Objective 1) Determine the large-scale patterns of relationship between fire 

management, hydrology, and abundance and distribution of breeding and wintering 

landbirds and their habitats.  

 There has been relatively little study of the role that hydrology plays in shaping the 

composition of slash-pine forests.  However, hydrology is an important determinant of 

species composition and physiognomy in other southeastern pine ecosystems (Peet and 

Allard 1993, Allen et al. 2006), and Duever (2005) argued that hydroperiod and water-

table elevation played a major in shaping the composition of slash-pine forests in BCNP.  

Fire has received more attention as a key ecosystem process, and the seminal work of 

Robertson (1953) and Alexander (1967) established the controlling role of fire in 

preventing the succession of slash pine to hardwood hammock.  More recently, Slocum et 

al. (2003) found that higher-elevation locations in the pine rocklands at Long Pine Key 

tended to experience more intense and uniform fires than did relatively low-elevation 

locations in the same area.  This pattern may have arisen due to an interaction with 

hydrology, whereby fuel moistures were greater at the wetter, lower-elevation sites.  

Although he presented no data in support of his contention, Loveless (1959) made a similar 

argument, suggesting that the effects of fire were strongly influenced by water levels.   

Almost nothing is known of the response of birds in slash-pine forests to variation in 

hydrology.  Working in a longleaf-pine forest, Allen et al. (2006) found substantial variation 

in the structure and composition of a breeding-bird community along moisture gradients, 

although the gradient in that study encompassed non-pine plant communities (e.g., 

pocosins).  The few studies that have examined the effect of fire on birds in slash-pine 

forests have not found any strong relationship between bird abundance and fire history 

(Emlen 1970, Johnson and Landers 1982), although both studies examined a limited range 

of fire-return intervals (the maximum time since fire was 5 years).  Given our results, which 

indicate that most species tolerate fire-return intervals of up to 5 years with no appreciable 

effect on abundance, studies examining the importance of fire may need to include a wider 

range of fire histories.   

Objective 2) Investigate the role of fire in snag dynamics. 

 Elevated rates of snag creation observed in the dry-season treatments were due in 

large part to increased mortality of live trees.  Whether this pattern was actually a result of 

season of burn is unclear, however.  The average height of charred bark, a good indicator of 

fire intensity (e.g., Wade and Johansen 1986, Williams et al. 1998), tended to be greater 

during dry-season burns: fire intensities during the dry season were medium (91 – 235 
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BTU sec-1 ft-1) and were low (1 – 90 BTU sec-1 ft-1) to medium during the wet season (using 

the scale in Byram 1959).  Fire intensity, in turn, is often a good predictor of mortality of 

pine trees following fire (Glitzenstein et al. 1995, Menges and Deyrup 2001, Snyder et al. 

2005).  Although several a priori reasons exist to expect that season of burn may affect the 

ecological outcome of fire (see review of hypotheses in Glitzenstein et al. 1995), in this case 

season is confounded with variation in fire intensity and in general there is scant evidence 

for consistent seasonal patterns in the vulnerability of south Florida slash pine and related 

species to fire, in part because fire intensity does not vary consistently with season of burn 

(see, e.g., Snyder 1986, Glitzenstein et al. 1995, Menges and Deyrup 2001, Snyder et al. 

2005).  Although higher rates of tree mortality – presumably a consequence of more 

intense fires – were the primary reason that the dry-season burns were projected to yield 

higher densities of snags, dry-season burns also had lower rates of snag mortality, 

particularly for low-to-moderately decayed snags.  Again, this was likely a consequence of 

differences in the behavior of fires initiated in different seasons.  Given the general 

correlation between fire intensity and the rate of spread (Rothermel 1972), wet-season 

burns likely moved more slowly, with lower flame heights, and thus may have concentrated 

heat transfer around the base of trees and snags (Wade and Johansen 1986).  Snyder 

(1986) reported a similar phenomenon, in which a wet-season prescribed burn in the pine 

rocklands of Everglades National Park produced much hotter median ground-level 

temperatures (316°C v. 232°C) than a faster and more intense dry-season burn conducted 

on a nearby study plot. Wade and Johansen (1986) argued that most fire-related mortality 

in southern pines with dbh > 5.0 cm is due to crown damage, rather than cambial damage 

on the tree bole or root damage, which may explain why wet-season burns killed fewer live 

pine trees.  At the same time, by focusing heat transfer at the base of existing snags, wet-

season burns may have been more likely to consume sapwood at the base of low-to-

moderately decayed snags, weakening structural support and increasing the probability 

that these snags fell during the course of the study.  Snags of south Florida slash pine that 

had lost all sapwood from ground level to approximately 1 m above ground level were 

frequently observed (J. D. Lloyd and G. L. Slater, personal observation), and may reflect the 

action of slow-moving, low-intensity ground fires that may be typical of wet-season burns. 

 Longer fire-return intervals generally result in increased fuel loads, more intense 

fires, and higher mortality of live trees (Sackett 1975, Platt et al. 1991, Outcalt and Wade 

2004).  To the contrary, we found no evidence of consistent variation in fire intensity 

among plots burned at different intervals, which may explain why the effect of fire-return 

interval on rates of snag creation and mortality was somewhat muted relative to the effect 

of season of burn.  In general, shorter return intervals increased the mortality rate of live 

trees, but more of these trees had fallen down by the end of the study than on plots burned 

at longer intervals.  This pattern could have arisen either because short-return intervals 

increased the probability of live trees transitioning directly to the down category or 

because short-return intervals hastened the process of decay (i.e., trees that were alive at 

the beginning of the study were killed by fire and transitioned through one or both decay 

states to the down category prior to the final sampling period).  Given that fire intensity did 

not vary with return interval (at least for the first two intervals), we have no reason to 

believe that live trees were more likely to be consumed or toppled by fire on plots with 

shorter return intervals.  Rather, we believe that the latter scenario is more likely, and that 

short-return intervals simply hastened the transition from live tree to snag to downed 
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wood.  Indeed, the estimated lifespan of snags in decay state 1 was somewhat lower on 

plots burned at shorter intervals.  Holden et al. (2006) reported similar findings for snags 

of ponderosa pine (Pinus ponderosa), in that snag density in areas burned multiple times 

was significantly lower than snag density in areas that had only been burned once.  They 

attributed this result to the gradual consumption of wood at the base of snags during 

successive fires, which reduced structural support for the snag and led to increased fall 

rates.   

Our results suggest that prescribed burns could be an effective tool for increasing 

the density of snags, provided that the fire is sufficiently intense to induce mortality among 

live trees and moving rapidly enough to limit the consumption of sapwood on existing 

snags.  In this study, these conditions occurred during burns conducted during the dry 

season and on plots with longer fire-return intervals.  Other studies have found the 

opposite (e.g., Glitzenstein et al. 1995, Snyder et al. 2005), and thus we believe that our 

results reflect less on the role of season of burn than they do on the role of fire intensity, 

which may not vary predictably among seasons.  For example, Snyder (1986) found that 

prescribed burns conducted during the wet and dry seasons had similar characteristics (in 

terms of fuel consumption, rate of spread, and intensity) when fuel moisture was similar, 

but that the characteristics of dry- and wet-season burns diverged strongly when 

conducted with different fuel moisture levels.  Indeed, any effort to increase the density of 

snags should be incorporated into the overall goals of a fire management plan, most of 

which now seek to replicate natural fire regimes (e.g., Slocum et al. 2003).   In southern 

Florida, lightning-started fires are most frequent in July, although the area burned by 

lightning-started fires peaks in May during the transition between dry and wet seasons 

when lightning strikes are frequent and fuels remain dry (Komarek 1964, Doren et al. 

1993, Gunderson and Snyder 1994).  Thus, whereas prescribed burns used to be most 

common from October – March (Snyder 1991, Gunderson and Snyder 1994), they tend now 

to be initiated during the early wet season (Slocum et al. 2003).  Prescribed burns 

conducted early in the wet season might be useful for increasing snag densities as long as 

fuel and weather conditions are suitable to support a relatively intense fire.  As the wet 

season progresses, and fuel moistures increase, prescribed burns will likely have an 

increasingly detrimental effect on snag density because fewer snags will be created and 

more will be consumed.   

Longer fire-return intervals might also help optimize the balance between snag 

creation and snag consumption during a fire.  All things being equal, longer fire-return 

intervals should allow for the build-up of greater fuel loads, which in turn should promote 

more intense fires (Rothermel 1972, Sackett 1975).  The historic fire-return interval in the 

slash pine forests of southern Florida is thought to have ranged from as short as 2-3 years 

to as long as 10 or 15 years, although general agreement exists that, on average, most areas 

would have burned at least every 5 years (Snyder et al. 1990, USFWS 1999, Slocum et al. 

2003).  After many years of fire suppression, followed by infrequent fires that were often 

set outside of the historic fire season, prescribed fire regimes now generally attempt to 

mimic the putative natural pattern of fire and tend to use short fire-return intervals; for 

example, the pine rocklands of Everglades National Park have been burned on a 2-3 year 

rotation (Slocum et al. 2003).  In situations where snags suitable for use by cavity-nesting 

birds are limiting, which McComb et al. (1986) argue is generally the case for all of Florida’s 

slash pine forests, lengthening this interval in some areas, perhaps to 4 – 6 years, may be 
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beneficial.  Doing so would increase the density of low-to-moderately decayed snags, 

which, in slash pine forests, afford suitable nest sites for a variety of cavity-nesting birds, 

including species of management concern such as Eastern Bluebirds, Brown-headed 

Nuthatches, and Hairy Woodpeckers.  Other considerations may preclude burning large 

blocks of slash pine forest at longer intervals, but a similar effect might be achieved by 

relying on ignition methods that promote patchy fires (e.g., single-source ignition methods) 

and result in a mosaic of return intervals with at least some patches remaining unburned 

for longer periods. 

VII.  Future work needed 

1) Predictive models of the response of pineland birds to the changes in 

hydrology (e.g., water-table elevation) 

 We have described a pattern in which variation in water-table elevation is the 

primary correlate of large-scale (i.e., region-wide) variation in vegetation structure and in 

the distribution and abundance of breeding and wintering birds.  However, our analysis is 

purely exploratory, and confirmatory research, utilizing a study design explicitly targeted 

at revealing the effects of variation in water-table elevation and other hydrological 

variables (i.e., hydroperiod) is needed.  Future work on this question should take advantage 

of naturally occurring gradients, at a variety of spatial scales, to test hypotheses about the 

influence of water-table elevation on birds and plants.  This work should also recognize 

that large-scale gradients in water-table elevation are confounded with many other factors 

(soil type, biogeographical history, climate) and that small-scale gradients may be 

confounded with variation in fire history.    

2) Predictive models of the response of fuels to changes in hydrology (e.g., 

water-table elevation) 

 By using ordination analyses that identify orthogonal (i.e., uncorrelated) axes of 

variation, we have identified how hydrology and fire can shape the structure and 

composition of the South Florida slash-pine ecosystem independent of one another.  In 

reality, however, hydrology and fire interact with one another to shape biological 

communities.  We have identified spatial variation in vegetation structure that is correlated 

with spatial variation in water-table elevation, and it is reasonable to assume that temporal 

variation in water-table elevation and hydroperiod, as will accompany restoration of 

normative hydrological processes, will produce similar changes within a location.  These 

changes in vegetation structure will likely produce changes in the composition of fuels and 

in the rate at which they accumulate, both of which may influence fire behavior.  These 

changes could be modulated by accompanying changes in fire-management plans (e.g., 

increase rate of fuel accumulation might mandate a shortened fire-return interval), but 

refining these plans will require a better understanding of how changes in water-table 

elevation will change patterns of fuel accumulation.  Again, these future studies might take 

advantage of existing gradients in water-table elevation as means for predicting how 

conditions at a particular location may change over time.  Future studies addressing these 

questions should identify relevant response variables with the input of fire managers. 
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3) Identification of ecological targets for monitoring the response of the south 

Florida slash pine ecosystem to changes in water-table elevation and other 

hydrological factors (e.g., hydroperiod) 

 Predictive models can be a useful tool in evaluating management alternatives, but 

should always be verified with monitoring data.  Understanding the response of the South 

Florida slash-pine ecosystem to hydrological restoration of the greater Everglades will 

require long-term monitoring, but the best targets for such monitoring remain 

unidentified.  Based on our results, measures such as the relative understory dominance by 

hardwoods and palms, the height of the understory, growth rate of slash pine, basal area of 

slash pine, size-class distribution of slash pine, and density of pine snags might all be useful 

in assessing the effects of hydrological restoration on this ecosystem.  However, 

confirmatory studies – such as those that might also address needs 1 and 2 – would be 

useful in identifying the most sensitive and biologically significant targets for long-term 

monitoring. 

4) Identification of ecological targets for monitoring the response of slash-pine 

ecosystem to variation in fire regime 

 Although the effects of fire on plants and animals in the South Florida slash-pine 

ecosystem are better understood than are the effects of hydrology, long-term ecological 

monitoring is needed for continued refinement of the scientific basis underlying existing 

fire-management plans.  In addition to monitoring fuels, the efficacy of fire-management 

plans might be enhanced by identifying targets for monitoring that relate directly to 

ecological goals for slash-pine forests.  In some cases, these may overlap with targets for 

fuels monitoring.  Based on our results, many of the same response variables that might be 

measured for monitoring the effects of changes in water-table elevation (see need 3) could 

also be used to monitor the long-term effects of variation in fire regime.     

5) Research into the factors that drive snag recruitment and mortality. 

 Snags are both an important fuel source and an important ecological attribute.  They 

are an essential component of habitat for cavity-nesting birds, many of which are 

considered to be species of high importance by land managers.  Our research highlights the 

relationship between fire and snag dynamics, but more detailed monitoring is needed to 

improve our understanding of the links between prescribed fire, fire intensity, fuel 

moisture, and hydrology with snag recruitment and mortality.  In addition, this information 

needs to be assessed with the knowledge that many remaining pine forests in south Florida 

are small and fragmented, and thus attempts to mimic the full variation of naturally 

occurring fires through prescribed fire may prove difficult.   

6) Research into factors that drive variation in the distribution and abundance 

of cavity-nesting birds. 
 The extirpation of as many as five cavity-nesting birds in sites throughout the south 

Florida slash pine ecosystem indicates the sensitivity of this avian group to management 

actions, particularly fire.  Snag abundance is an important factor in regulating populations 

of this group and the long-term viability of existing and reintroduced populations will rely 
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on effective management strategies (i.e., prescribed fire) that maintain snags.  

Understanding how the distribution and abundance of cavity-nesters varies with respect to 

snag abundance and other factors will provide critical information to guide fire 

management, including the development of ecological targets for cavity-nesting birds.  

7) Research into factors that drive variation in the distribution and abundance 

of wintering birds 

 The slash-pine forests of south Florida are an important wintering ground for a 

variety of species, including Yellow-rumped Warbler and Palm Warbler, yet little is known 

of the habitat requirements of species wintering there.  Evaluating the effects of 

management actions (most importantly, efforts at restoring natural hydrological and fire 

regimes) on wintering birds is difficult absent a better understanding of the factors that 

shape their distribution and abundance.  Given the importance of fruit in the diet of many 

wintering birds (e.g, Eastern Bluebird, Yellow-rumped Warbler, and American Robin), 

future studies might profitably examine the relationship between bird abundance and 

fruiting shrubs, and whether variation in fire regime has any effect on the availability of 

fruit.    

IX.  Status of deliverables 

 
Deliverable Description Date delivered 

1st Annual 

Progress Report 

Summarization of winter bird surveys; compilation of snag 

data. 
Completed 

2nd Annual 

Progress Report 

Summarization of first year of data collection; preliminary 

results of fire, fuel, bird models. 
Completed 

3rd Annual 

Progress Report 

Summarization of second year of data collection; 

preliminary results of snag models. 
Completed 

Final Report 

Report will include executive summary, introduction of 

topic, description of methods, work results (including all 

models, figures, graphs, and tables), discussions, and 

conclusions. 

Completed 

Peer-reviewed 

article 

Snag dynamics in the pine rocklands: the role of fuel 

treatments. 

In revision; 

Canadian 

Journal of Forest 

Research 

Peer-reviewed 

article 

The ecological effect of fire management: large-scale 

patterns between breeding and wintering birds and 

wildland fuels in south Florida 

In preparation  

Peer-reviewed 

article 

Effects of fuel treatment on the biological condition of pine 

rocklands as represented by bird communities 
In preparation 

State of the 

Science 

Symposium 

Symposium to disseminate results of this study, present 

ongoing work by other researchers and managers working 

in the pine rockland ecosystem, develop a biennial action 

plan, and encourage inter-agency communication and 

collaboration 

In preparation; 

Pine Rockland 

Conference 

February 2010 
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